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The properties of the steady free fall of an autorotating rigid body in a resistant medium are compared 

with those of the corresponding permanent rotation of a mock-up of the body in a wind-tunnel. The 

relative motions of the body and the medium are the same in both these steady motions, but the body 

has a different number of degrees of freedom. 

The domain of asymptotic stability of steady fall is constructed in parameter space and 
compared with the domain of stability of permanent rotation [l]. It has been established 
that, regardless of the difference in the dynamics of the bodies, the boundaries of the domains 
of stability coincide in part. Characteristic parameters are determined to enable a measure 
of the difference between the domains to be defined. Stability is analysed using a geometrical 
interpretation of the conditions, established in [2], that the roots of a certain third-degree 
polynomial with complex coefficients have negative real parts. 

As no comparison theorems (like the Kelvin-Chetayev theorems on the effect of dissipative 
forces) are available for dynamical systems that differ in their dimensions, an examination of 
specific example may be of some methodological interest. This is particularly true in view of 
the fact that, although some experience has been gained in experimenting with moving mock- 
ups in wind-tunnels [3], the question of the correspondence between these mock-ups and their 
prototypes in free flight still awaits a thorough investigation. 

1. MATHEMATICAL MODEL OF THE MOTION 

Consider a dynamically symmetrical body falling freely in an undisturbed atmosphere. In 
addition to its weight Mg, the body is subjected to a distributed system of forces exerted by the 
incident flow. As in [l], we shall regard this force as concentrated on four vanes, whose 
location on the body causes autorotation round the body’s axis of dynamical symmetry. Our 
problem is whether a motion of uniform vertical descent exists during which the body rotates 
at a constant angular velocity around a vertically oriented axis of symmetry, and, if it does, 
whether such motion is stable. 

The action of the medium on the body will be simulated by a quasistatic model [4]. Under 
certain conditions this yields a satisfactory description even of unsteady motion [5,6]. 

Let us assume that the system of forces acting on vane i is equivalent to the resultant R, of 
two mutually perpendicular components: the drag force Wj and the analogue Yj of the lift. The 
point Oj at which the force Ri is applied (the centre of pressure) is assumed to be a fixed point 
on the vane i. The velocity of Oj is then given by 
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Vj=V+cLXrj (1.1) 

where rZ is the angular velocity of the body and 5 the radius-vector of Oj relative to the centre 
of mass, which is moving at a velocity V. 

We write the vectors Wj and Yj in the form 

wj = - )c; PC* (a j Pvjvj (1.2) 

Yj = ,S$ PCy (O!j )S(Vj X llj ) X Vj I COSCX j (1.3) 

where p is the density of the atmosphere, S the characteristic area of the vane, and ~,(a~), 
c,(aj) are dimensionless aerodynamic coefficients, which are functions of the angle of attack 
aj of the vane j, i.e. the angle between the vector Vi and the plane of the vane. The vector nj, 
the normal to the latter plane, determines the orientation of the vane in a frame of reference 
attached to the body. 

It can be seen that the resistance force Wj points in the direction opposite to that of the 
velocity Vj of the centre of pressure Oj relative to the stationary medium, while Yj is perpen- 
dicular and lies in the plane of the angle of attack a,, formed by the vectors Vj and nj. 

We shall assume that the centres of pressure Oj and the body’s centre of mass lie in a single 
plane orthogonal to the axis of the Sykes of the body, at a distance r from the axis and 
forming the vertices of a square. 

The sum of the forces Wj +Yj applied to vane j produces a moment Mj about the centre of 
mass 

Mi =~pc,(ai)SVJ{k(ai)(rj Xnj)!$ /cosaj-(rj XVj)fl-k(aj)tgajJl 

Wj)=c,(aj)/c,(aj) 

(1.4) 

where k(a,) is the lift-drag ratio of the vane. 
The moment about 0, of the forces exerted by the medium will be ignored. Thus, the forces 

and their moments depend on the angles that determine the orientation of the vector V relative 
to the body, on the body’s angular velocity and on the differences between the velocities and 
angles of attack of the vanes. Further allowance for the difference between the velocities at 
different points of the same vane does not essentially alter the structure of this model of the 
action of the medium; its contribution will be less the smaller the vanes compared with the 
dimensions of the body. 

To describe the motion of the body we shall use a system of coordinates Oxyz whose t axis 
coincides with the body’s axis of dynamic symmetry, while the x and y axes are placed in sueh 
a way that the centres of pressure 0, lie on them. We then have the following formulae for 
the momentum L, the angular momentum G relative to the centre of mass, and the vectors ri 
and nj 

where M, A and Care the mass and equatorial and polar moments of inertia of the body, I, m 
and II are unit vectors on the n, y, z axes, respectively vi is an angle whose values are w1 = 0, 
vz=ff/2, vg=lr, w4= -x/2 and which determines the position of the point O,, p is the angle 
between the normal ni and the plane xOy, i.e. the angle between the vane 1 and the appropriate 
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coordinate axis, V,, V,, V, are the projections of the vector V, and Q, a,,, R, the 
corresponding projections of the angular velocity Q of the body. 

The orientation of the body (hence also of the system Oxyz) in space is determined by the 
angles cp, 8, y, where cp and 8 are the Krylov angles, which characterize the position of the z axis 
(the axis of symmetry of the body) in a system of coordinates rotating at angular velocity y 
about a vertical axis through the body’s centre of mass. 

The passage from a non-rotating system of coordinates to the system Oxyz moving with the 
body involves a sequence of rotations that does not introduce terms modulated by the angle of 
spin in the formulae for the external forces and moments. This in turn implies that the 
equations of the perturbed motion will not involve any periodic coefficients so that these 
equations will constitute a stationary system. 

The projections of the angular velocity fJ are 

Q, =6-tsincp, a, =jcoscpsin0++cosO 

Q, =jcoscpcos@-@sine. 

By (l.l), the projections of the velocities Vi of the pressure centres Oj are given by 

V,=V,-Kl,SillWj, V~=Vy+dl,COS~j 

Vj=V,+r(n,SinWj+nyCOSWj) 

It is clear from our account that the equations of motion are projected onto axes rigidly 
attached to the body. This is because the expressions for the forces and moments are most 
easily obtained as functions of the projections of the velocities of the centres of pressure on 
such axes. In what follows, after deriving linearized equations, we shall transform to a 
comoving frame of reference. 

2. STEADY MOTION 

Let us assume that the body is moving in such a way that its centre of mass descends 
vertically while the body itself rotates about the vertically oriented axis of symmetry. The 
projections of the angular velocity n and the linear velocity V of the body and the angles that 
determine the orientation of its axis of symmetry are 

apnpo, v,=v,=o, (p=e=o (2.1) 

In this case the moduli of the velocities Vj of the centres of pressure Oj relative to the medium 
are equal, as are the angles of attack a,; their values are respectively V, and a. These 
quantities satisfy the kinematic relations 

V, =[V* +(&I )*I&, .? 2 ril 2 =-V sin(cr-p), r 
(2.2) 

V, = - V, cos(a - j3) 

Substituting expressions (l.l), (1.7) and (1.8) for Vi, 4, nj into formulae (1.2)-(1.4) for the 
aerodynamic forces Wj, Yj and their moments Mj and transforming in accordance with (2.1) 
and (2.2), we obtain the projections of the forces and moments of the overall action of the 
medium 

Rx = 0, Ry =0, Rz = -2pc,(a)SV,V,[l -k(a)tg(a-P)] 

M, = 0, MY =.O, M, = -2w, (a)sKK W(a) + tg(a - p>l 
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If a = a, satisfies the transcendental equation 

Mao) + 4&h - B> = 0 (2.3) 

then the moment M, vanishes. But if, in addition, the vertical projection is V, = V,,, where V,, 
is a root of the equation 

MS - 2pc,(ao>SV$ / cod (a, -B> = o (2.4) 

then the sum of all the external forces applied to the body will also vanish, In that situation the 
angle of attack a, and the velocities V,, will correspond to constant values of the angular 
velocity Q, of the body and the velocity V,, of the centre of mass 

fiZ0 = VzoWao -fQ V,, = P$ +W,o)2 lyz 

Whenever the sum of all applied forces and moments vanishes, one particular solution of the 
equations of motion will be vertical uniform fall at a velocity Vzo, with the body rotating at an 
angular velocity RzO about a vertical axis of symmetry. 

The angle of attack a, in such situations of steady fall satisfies the same transcendental 
equation as in the case of permanent rotation in flow in a wind-tunnel [l], about an axis of 
symmetry parallel to the flow direction. Consequently, a rotating body falling steadily in a 
medium, as described by Eqs (2.1), (2.3) and (2.4), may be compared with the same body, but 
with a stationary centre of mass, autorotating in a flow. The relative motion of the body in the 
medium is the same in both cases. 

3. STABILITY TO PERTURBATIONS OF THE VERTICAL COMPONENTS OF THE 
LINEAR AND ANGULAR VELOCITIES 

To analyse the stability of the steady motion (2.1), (2.3) and (2.4), we will set up the 
equations of perturbed motion. To do this, we linearize the expressions for the applied forces 
(1.2), (1.3), the moments (1.4), and the total derivatives of the momentum (1.5) and angular 
momentum (1.6). This gives a set of equations consisting of two independent subsystems. The 
increments AVz, AV_, AS&, AQ,,, Acp, A8 satisfy one subsystem. The other consists of two 
equations in AV, and M, 

MAvz = -2pc,SV,,[&M, +kAV,)+2AVz(1+k2)] 

CA&i, = -2Q’W,%+~, + UV,) 

~=(c,c:+cyc;)/(c,2+c~) 

q=1+k’cos2(a-p), <=5-2k 

(3.1) 

Here and below c,, cu, k, c:, c;, k’ are the values of the functions c,(a), c,(a), k(a) and their 
derivatives with respect to a at a = a,. 

Introducing a new independent variable r= 2c,pSV,dlM in system (3.1), we obtain the 
characteristic equation of the transformed system 

KZ+K(8+7)/P)+2rl(l+k2)lP=O 

6=2+k5, P=Cl(Mr’) 
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The velocity increments AV, and AR, will tend to zero if 

q > 0, 6 + q/P > 0 (3.2) 

Let us check these inequalities against the conditions for the steady value of the angular 
velocity of rotation of the body about a stationary axis parallel to the flow to be asymptotically 
stable [l]. It can be seen that the first inequality of (3.2) represents the stability of steady 
rotation of the body in the flow. For steady fall at velocities VzO, LIZ, to be asymptotically 
stable, one more condition is necessary: the second inequality of (3.2). This inequality, unlike 
the first, involves not only the aerodynamic parameters but also P, which characterizes the 
mass distribution in the body. As P decreases, the conditions (3.2) for the asymptotic stablity 
of steady fall approach the first asymptotic stability condition (3.2) for rotation of a body in a 
flow at constant angular velocity. 

If the vanes are shaped like flat plates, the motion of the body will have the following 
property [7, 81. The functions c,(a), cY(a) behave typically in such a way that, for angles of 
attack not exceeding d6 the quantity 5 remains positive. Hence the first inequality of (3.2) is a 
necessary and sufficient condition for stability in this range of a,. The second inequality 
imposes no further restrictions. 

4. STABILITY OF THE VERTICAL ORIENTATION OF THE AXIS OF SYMMETRY AND 
THE VELOCITY VECTOR OF THE CENTRE OF MASS IN FREE FALL 

To simplify the system of equations for small oscillations of the axis of symmetry and small 
variations in the direction of the velocity of the centre of mass, we will introduce complex 
variables 3L, o, u and transform to an attached system of coordinates by the formulae 

A= (A0 + iAq)exp(-iQ,,,t), o = (AC&. + iM,)exp(-iR,,r) 

u = (AV, + iAb’,)exp(-if2,,t) 

As a result, the linearized equations may be brought to the form 

h = co, Aci, - iCR,,o = rpc,SV,, (cu - rw6) 

M(fi-iV,,o) =-ihMg+pc,SV,,[~-u(l+q-ktga)] 

The number of dimensions of the parameter space of this system may be minimized by 
normalizing the variables. The unit of the new independent variable will be T = A(r2pcxSV,,)-‘, 
the unit of angular velocity l/T, and the unit increment of linear velocity IV, I. Clearly, T 
is proportional to the characteristic time for the so-called fast variation of the angular velocity 
0 191. 

Transforming the equations of motion in accordance with (2.3) and (2.4) we see that the 
normalized variables u and o satisfy the system 

h=o, h+w@+ib,)-uN~cos(a,-p)/c, =0 

li+eu(l+?l-ktga)+o{i-qekc, l[Ncos(aO -j3)]}+2i&h/cos2(a0 -p)=O (4.1) 

b, = -kCA’cos(ao -+)/(Ac,) 

The coefficients of system (4.1) are functions of the aerodynamic parameters at a = a,,, and 
also of the three quantities CIA, E = Al(MrZ), N= Al($S), which involve the mass and 
geometrical characteristics of the body. 
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The characteristic equation of system (4.1) is 

p3 +(a, +ib,)p’+(a, +ib2)p+ib3 =0 (4.2) 

where 
at =S+a(l+q-&tga), 

u2 =&[6(1+q-&tga)-&l&c] 

b2 =[c-Ek(l+q-ktga)]Ncos(a,-/3)/c,, 

& = 2&V< /[c, cos(aO - p)] 

Necessary and sufficient conditions for the steady fall under consideration to be 
asymptotically stable will be obtained as conditions for the real parts of the roots of Eq. (4.2) to 
be negative. These conditions impose restrictions on certain determinants of the coefficients of 
Eq. (4.2), which may be expressed in the form [2] 

aI > 0 b2b3 > 0 

b&,b,b; + a:a2b2 - a:b3 - b;) > 0 

(4.3) 

(4.4) 

5. ANALYSIS OF THE RESTRICTIONS ON THE COEFFICIENTS OF THE 
CHARACTERISTIC EQUATION 

The characteristic equation, which is of degree 3, may always be reduced to the form (4.2), in 

which the free term is purely imaginary. In our present situation this is a consequence of the 
transformation to an attached system of coordinates. The stability conditions (4.3) and (4.4) 
impose restrictions on the five real coefficients a, and bi. One can form three functions of these 
coefficients such that conditions (4.3) and (4.4) admit of an easily understood geometrical 
interpretation. 

Such functions may be constructed in more than one way. The specific construction selected 
is influenced, on the one hand, by the nature of the dependence of the coefficients a, and bi on 
the physical parameters of the problem and, on the other, by the admissible range of variation 
of these parameters, and hence also of the coefficients ai and bi themselves. To make the 
selection in this case, we use our initial assumption concerning the geometry of the vanes. 

We shall assume that the vanes are similar to flat plates and that their angle p is positive and 
bounded by a certain number B* < x/2. The specific bound fi* is chosen so as to guarantee 
that the transcendental equation (2.3) should have a unique solution. The solution may fail to 
be unique because at p values near x/2 the range of angles of attack a,, of the solutions of Eq. 
(2.3) moves into the domain x/6< a,, cd2, where the lift-drag ratio k(a) behaves like the 
function -tg(a-x/2) =ctga and Eq. (2.3) becomes an identity [5]. Such behaviour of k(a), 
judging from experimental results [7,8], is typical for the aerodynamics of flat plates, probably 
because of how they behave in flows at large angles of attack. 

With b* suitably chosen, the solution of Eq. (2.3) usually lies in an interval in which k(a) 
increases monotonically and is unique. Moreover, as a rule 4 and 1 -k tga, are positive in that 
interval. As a result, conditions (3.2) and (3.3) for asymptotic stability of the steady values Q0, 
V,, are satisfied, but in addition the coefficients a, and a, remain positive. 

Thus, for this vane geometry, some of the stability conditions are satisfied and the coefficient 
oz is positive. This makes it possible to form three real-valued functions X = b,la, dq, 
Y = b3/$d%, Z=-bl/da, from the coefficients ai and bi, which moreover have no 
singularities. Accordingly, we have a three-dimensional system of coordinates XYZ. 
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Characteristic equations of type (4.2) arise when investigating mechanical systems with three 
degrees of freedom possessing a certain symmetry. Therefore, the stability domain (SD) in the 
space of parameters X, Y, 2, which are related to the coefficients of Eq. (4.2), presents a 
special, universal geometrical picture, which will now be described. 

For simplicity, we will consider the half-space 2 > 0 (in particular, in our specific situation, 
4 < 0). In the half-space 2 > 0, the inequality /& > 0 leaves only two quadrants for the SD, in 
the first of which X > 0, Y > 0, and in the second, X c 0, Y < 0. Condition (4.4) is satisfied for 
the points of these quadrants, which lie respectively below and above the surface E whose 
equation is 

Y=X-ZP-x3 (5.1) 

Consequently, the SD in XYZ space is the non-empty set between the XZ plane and the 
surface Ewhere ZBO. 

Let us consider some properties of this surface E (Fig. 1). For any fixed Z, the quantity Y is a cubic 

function of X. The cubic parabolas in which E cuts the plane Z =0 and all planes parallel to Z=O 

intersect the X axis at X = 0 and at two other points, defined by the roots of the quadratic equation 

1-w-x*=0 (5.2) 

These roots are real and of different signs, i.e. the points at which the cubic parabola (5.1) intersects the 

X axis lie on different sides of the origin. At Z = 0 the roots equal 1 in absolute value. As Z increases the 

positive root tends to zero, and the negative root to -Z. Hence it follows that the surface E cuts the plane 
Y = 0 on the Z axis and on the hyperbola (5.2) in the XZ plane, whose asymptotes are the Z axis and the 
straight line Z = -X. 

Fig. 1. 
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6. COMPARISON OF THE STABILITY DOMAINS OF STEADY FALL AND 
PERMANENT ROTATION 

The stability domain of permanent rotation (SDPR) [l] was constructed in the k, 5 plane; 
part of its boundary runs along the straight line 5 = 2k. Part of the boundary of the stability 
domain of steady fall (SDSF) lies in the plane Y = 0. As these equations are clearly equivalent, 
the boundaries of the stability domains in both motions have sections that lie in the plane 
Y = 0. However, while the SDSF is doubly connected, i.e. part of it lies above the plane Y = 0, 
where X> 0, and part below, where X <O, the SDPR is simply connected, lying below the 
straight line 4 = 2k in the k, 5 plane, or what is the same, below the plane Y = 0, where X < 0. 
Herein lies the difference between the stability properties of the motions: the permanent 
rotation correspanding to the region Y > 0, i.e. E, = 2k, is always unstable. The root of this 
instability is the destabilizing effect of non-conservative positional forces (such as the Magnus 
force). In free fall this factor may be neutralized by the link between the degrees of freedom of 
rotational and translational motion. Thus, in a sense, the SDSF is larger than the SDPR. 

Besides the common section of the boundary in the plane Y = 0, the other parts of the 
boundaries of the SDS of the two motions are not generally the same. In permanent rotation 
the other part of the boundary forms the curve 5 = 2k(l- Cl A)/(1 + k2Cl A) in the k, 5 plane 
[l], This equation is equivalent to 4b, = 4, which is equivalent in XYZ space to the equation of 
the vertical plane X + 2 = 0 (see Fig. 1). A necessary condition for the permanent rotation to 
be stable is, in particular, that Q&J - b2 c 0. Hence the SDPR lies beneath the plane Y = 0, 
where X G 0, and to the right of the plane X + Z = 0, i.e. where X > -2. 

It can be seen that the plane X+ .Z = 0 cuts the surface E along the straight line X = Y, 
Z =-X. Consequently, the plane Y + 2 = 0 cuts the part of the SDSF lying beneath the plane 
Y = 0 into two parts. Hence it is clear that not only when Y > 0 but also when Y c 0 there is a 
part of the SDSF lying outside the SDPR. 

However, the part of the SDPR situated beneath the surface E lies outside the SDSF. 

7. PARAMETRIC ANALYSIS 

The three numbers X, Y, Z determine the position of the point with these coordinates, say B, 
relative to the SD. Hence analysis of X, Y, Z as functions of the parameters N, E, C/A may 
provide a qualitative picture of the effect of these parameters on the stability properties of the 
steady motions under consideration. 

Let us consider the role of the parameter N=A/@r3S), which is known as Newton’s 
number. It can be seen that the absolute values of X, Y, 2 are directly pr~ortional to N. Thus, 
as N varies, the point B moves in XYZ space along a ray through the origin, in a direction 
equal to that of the vector with projections ;YN, YIN, Z/N, which is independent of N. Hence it 
follows that, depending on the shape of the boundary of the SD and the direction of the 
aforementioned vector, variation of N may have a two-fold effect. 

For example, if the point B for some value of N lies in the component of the SDSF with 
Y > 0, increasing N will always cause a loss of stability. The same is true if the point B lies in 
the component of the SD where Y c 0 and Z < -X. But if the point B lies at the intersection of 
the stability domains, an increase in N will have no destabilizing effect. 

The parameter E - - A(Mr’) characterizes the concentration of the body’s mass relative to its 
“aerodynamic size” r. At small values of e any change will have the opposite effect to that of a 
change in N, since X, Y, Z are inversely proportional to &. 

For infinitely small E or infinitely large N the stability condition (4.4) for free fall is 
equivalent to the corresponding stability condition for permanent rotation. In particular, in 
XYZ space this means that as Z increases the intersection of the stability domains, which lies in 
a plane 2 = const, will expand and the parts of the SDSF outside the intersection will contract. 
In addition, if E tends to zero because of the increase in Mr2, the number CI(Mr’) will also 
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decrease. As a result, all the stability conditions for steady fall degenerate into the stability 
conditions for permanent rotation. 

Thus, the parameters E and N may serve as a measure of the difference between the stability 
conditions of the two motions. 

We will now consider the effect of a change in the ratio C/A of the moments of inertia on the 
stability of steady fall, assuming that the other parameters remain fixed. 

The quantities X and 2 are linear functions of C/A, while Y is independent of it. As CIA 
varies, therefore, the corresponding point Bin XYZ space will move along a straight line in a 
plane Y = const. 

To describe this line, we begin with the limiting case CIA = 0. 
When C/A = 0, Z vanishes, while X and Y take equal values; hence the initial point B’ of the 

line lies in the first and third quadrants of the XY plane. The position of this point B’ 
determines the position of the whole line relative to the SD. Recall (see Section 5) that these 
same quadrants contain the intersection of the SDSF and the XY plane. In addition, QA may 
vary only from zero to 2, and so the motion of the point B along the straight line is restricted to 
a certain segment of finite length. The length and direction of this segment also influence the 
stability properties of the motion. The inclination of all such segments is determined by the 
derivative 

az/aIx=-l- 
6 

&(l+?j-ktga) 

Obviously, as CIA increases the value of Z increases, X decreases, and the angle between the 
plane Z = 0 and the segments is greater than a14 but at most lc/2. Taking the properties of the 
family of segments into account, let us compare them with the family of level curves Y = const, 
which characterize the contour of the surface E (see Fig. 2). This will enable us to evaluate the 
effect of changes in CIA on the stability. 

First let us consider the case in which the initial point B; of the segment lies in the first 
quadrant of the XY plane (Fig. 2). 

Suppose first that B; is a point of the SD. It can be seen from an analysis of the relief of the 
surface E when X > 0, Y > 0, of its level curves and of the inclination of the segments, that as 
CIA increases the representative point B, moving away from the plane Z = 0, will approach E. 
Whether it will leave the SD or remain inside it along its entire path will depend on the totality 
of all the other parameters. 

Fig. 2. 
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We will now discuss the case in which the initial points of the segments, as before, lie in the 
first quadrant of the XY plane, but outside the SD, i.e. above the boundary curve Y =X-X3. 
In that situation the c~afacteristic point will be a local maims point of the ~orementioned 
curve, with coordinates X= l/43, Y= 2(343). If, say, the initial point B; lies to the left of 
or above the maximum, i.e. the coordinates of BI satisfy the inequalities Y > Z/(343) or 
X <l/43, then for any values of CIA and the other parameters the segment will lie outside 
the SD. Otherwise, if X >l/J3, Y c2(343), an increase in C/A may result in a variety of 
situations. One possible case, as before, is a loss of stability. But there are other possibilities: 
stability may occur; stability may be maint~ed up to the m~imum QA or subsequently be 
lost for certain C/A c 2. A more definite picture requires numerical computations, taking all 
the other parameters into account. 

Thus, if the initial point of the segment lies in the first quadrant of the XY plane, a change in 
the ratio OA may affect stability in all possible ways. 

The situation is different when the initial points of the segments lie in the third quadrant of 
the XY plane. We know [l] that increasing CIA from zero will always stabilize permanent 
rotation. In other words, the corresponding segment of the straight line, beginning at a point 
B; in the plane Z = 0, will always cut the plane X + 2 = 0 at a point D (Fig. 2). 

Here there are three possibilities. 
If the initial point Bi; is in the SDSF, it will always remain there, but part of the segment will 

lie in the inte~e~tion of the two stability domains being compared. 
The Y coordinate of 131 may be chosen outside the stability domain in such a way that 

increasing C/A from zero to some value will stabilize steady fall, i.e. the point 23 will cut the 
surface E at a point El. Only after crossing the plane X + Z = 0, as a result of a further increase 
in C/A, will the point again enter the intersection of the stability domains. 

Thus, in the two previous cases an increase in CIA guarantees stability, while for stability of 
~r~nent rotation one needs a value of CIA so large that the steady fall is certainly stable. 

The opposite situation may also occur: for a certain choice of the Y coordinate of Bi outside 
the SD, increasing QA may guarantee stability of permanent rotation, i.e. the motion will 
reach the plane X + 2 = 0 at the point D. Whether one can guarantee stability of steady fall by 
a further increase in C/A, i.e. reaching the point E,, depends on the relief of the surface E in 
the direction of the segment and on the values of all the other parameters. 

8. EVOLUTION OF STABILITY AS THE VANE ANGLE p VARIES 

The stability of steady fall (2.1)-(2.4) depends not only on mass and geometrical data, as 
represented by the parameters e, N and CIA, but also on the angle l3 at which the vane is 
mounted. By (2.3), this angle determines the-steady-state angle of attack a, and, via the 
functions c, and c,, affects the quantities X, Y, Z. 

We will use a device similar to that used in [l], considering the functions X(b), Y(p), Z(B) as 
the parametric representation of a certain curve C in XYZ space. As p varies monotonically 
(and accord~gly also GE,>, the repre~ntative point B moves along I;. Its position relative to the 
SD tells us something of the possible behaviour of the body. 

When p= 0 and a, = 0, we have X = Y = Z = 0, and hence the initial point of the curve E is 
the origin. As l3 and, by E$. (2.3) u,, increase, X, Y, Z may become positive. For example, at 
small 01, values, the aerodynamic data of a flat circular disk [7] give 4 > 2k, guaranteeing that 
x>o, Y>O, z>o. 

When X > 0, Y > 0, ~rmanent rotation is unstable, but part of the SDSF neverthele~ lies in 
that part of XYZ space; one is therefore interested in whether the curve x can pass through 
that zone. In other words, can the stability conditions for steady fall be satisfied at small o0 
values, when 5 > 2k? On the assumption that b, > 0, b3 > 0, X > 0, Y > 0, let a, + 0 in equality 
(4.4). This yields the condition %bz > u,b3, which is equivalent to the requirement that the 
inclination of the curve T, at the origin must be less than that of the surface E at the same point, 
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and that at least the initial part of z must pass through the SD when X > 0, Y > 0. Substituting 
expressions (4.3) for a, and bi into this condition, it can be shown that it will always hold if 
E c [k’(O)-2]l[k’(0)+2]. Hence it is clear that a suitable choice of E will ensure the truth of this 
inequality. 

For flat plates of many shapers [7, 81, the derivative K(a) may considerably exceed unity at 
a, = 0. In that case E should not exceed a certain quantity close to unity. This requirement can 
always be fully satisfied. 

Thus, over a range of angles of attack a, approaching a, = 0, steady fall may be 
asymptotically stable, while the corresponding permanent rotation is always unstable. 

We shall not limit ourselves to local properties of the curve x;. As p and, accordingly, a, 
increase, the difference 5 - 2k will begin to decrease. This will reduce X and Y. As a result, at 
some a, = a * the point B will leave the SD at X > 0, Y > 0, and then reach the plane X = 0 at 
some positive Y. When j3 and a, are increased further, the difference 5 - 2k will vanish, so that 
Y will vanish. The curve Z will intersect the plane Y = 0. By the conditions we have adopted, 
the sum X + 2 will always be positive at the point of intersection. Thus C will intersect the 
plane Y = 0 between the straight lines X = 0 and X + 2 = 0 in the plane Y = 0. Since that is the 
location of the common part of the boundaries of the two SDS with which we are concerned, it 
follows that the curve C will subsequently lie at the intersection of the stability domains with 
X c 0, Y c 0, so that both steady fall and permanent rotation will become asymptotically stable 
at the same values of p and a,,. 

As to further changes in the properties of the motion, the following remark is in order. It is 
well known [l] that when CIA<1 and a, is increased, permanent rotation will become 
unstable at some a, = a, *. In XYZ space, the curve x will intersect the boundary of the 
SDPR-the plane X + 2 = 0. The position of the point of intersection relative to the surface E 
will indicate whether the motion is stable. Let us subtract the ordinate y of the point at which x 
intersects the plane X + 2 = 0 from the corresponding ordinate of the point on the straight line 
X + 2 = 0, X = Y along which E cuts the plane X+Z = 0. The sign of the difference will 
obviously determine whether the point of intersection of x and the plane X + Z = 0 belongs to 
the SDSF or not. It can be shown that the sign of the difference is precisely the sign of the 
quantity 

2(k’-k2 -ktga,)-&(1+2k*+ktga,) 

This quantity will certainly be negative if k'(a * *) s 0. In that case the point in question on C 
will lie below E, i.e. outside the SDSF. In other words, as p and a,, increase the point B will 
first cross E and only then reach the plane X + Z = 0. 

Moreover, as can be verified by computations, for vanes in the shape of flat plates, the above 
difference is strictly negative over the entire range of angles of attack a, from a,, = a* to 
a, = a * *, i.e. from the intersection of C with the plane Y = 0 to its intersection with the plane 
x+z=o. 

Thus, permanent rotation will become unstable before the onset of instability in the 
corresponding steady fall. 

At the same time, for sufficiently small C/A values, even with vanes with a relatively poor 
lift-drag ratio, the initial part of the curve x may lie in the SDSF for X < 0 and Y c 0, but 
outside the SDPR. 

9. TYPES OF BEHAVIOUR OF THE BODY WHEN THERE IS LOSS OF STABILITY IN 
STEADY FALL 

The loss of stability across the boundary of the SD may vary in nature, depending on where 
the crossing occurs. Suppose that the parameters of the system are such that the representative 
point B in XYZ space is located near the part of the boundary in the plane Y = 0 outside the 
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SD, i.e. where XY < 0. Ignoring quantities of second and higher order of smallness, we 
determine the root p of the characteristic equation (4.2) of smallest absolute value 

If the point B lies near the common part of the boundaries of the SDPR and SDSF, 
i.e. X c 0, both types of motion will become unstable owing to the development of slow 
reverse precession. The loss of stability will thus occur in the same way in both types of 
motion. 

If the point B is outside the SDSF, with X > 0, and Y c 0, slow precession will develop in the 
same sense as the rotation. 

Another type of motion will take place if B lies on the part of the surface E bounding the 
SDSF. The characteristic equation (4.2) will then have one purely imaginary root p= -ib,lq. 
Since a, > 0, b,b, > 0, the other two roots will have negative real parts. Loss of stability will be 
due to the development of fast precession, as in the destabilization of permanent rotation, but 
the angular velocity of the precession will not be equal to that of Euler precession. 

If one considers the part of E with X > 0 and Y >O,the sign of the angular velocity of 
precession of the body in free fall is the reverse of that of Euler precession. 

In the neighbourhood of the other part of E, where X c 0, Y < 0, the sign of the angular 
velocity of fast precession will be the same as that of Euler precession. But if, additionally, the 
parameter E tends to zero, then the two velocities will also be similar in absolute value-yet 
another illustration of the role of E as a measure of similarity between the two types of motion. 

Thus, by comparing the stability conditions for these two, so to speak, “aerodynamically 
similar” types of motion of a body, we have been able to establish several useful properties. 
First, we have determined some common features of the behaviour of the body, including the 
fact that the boundaries of the stability domains coincide in part. Second, we have pointed out 
differences in their behaviour and proposed parameters that measure these differences. This 
information may prove useful in interpreting the results of wind-tunnel experimentation with 
mock-ups of aircraft and in using them to predict the latter’s free motion. 

An important role was played in the analysis by a universal geometrical representation-the 
SD of a linear mechanical system with three degrees of freedom, possessing a well-defined 
symmetry-in the parameter space of its characteristic equation. 
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